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What makes decision-making hard, and what determines the time it takes to make a 
decision? For simple decisions, the standard answer implicates neuronal noise: its presence 
makes decisions hard, and averaging it out comes at the cost of long reaction times. We 
argue that this explanation is unlikely to hold for complex decisions. Instead, complex 
decisions are constrained by two main factors: memory retrieval and value computation. 
Indeed, most decisions require retrieving relevant information from memory, and use it to 
compute the choice options’ values. For the large memories of vertebrate brains, both 
operations can be extremely complex even if the neural circuits implementing them are 
perfectly noiseless. Yet, the importance of these factors has not yet been fully recognized 
in systems neuroscience, which tends to focus on tasks in which values are retrieved from 
simple noisy look-up tables. The interrogation of more complex and realistic tasks, similar 
to the ones used in human research, might help bridge this gap.  

Introduction  
We consider here the general problem of value-based decision-making; that is, decisions that 
require a choice between two or more options whose subjective values can only be determined 
from information stored in long-term memories (Shadlen & Shohamy, 2016). Such value-
based decisions span a wide range – from relatively simple, such as deciding which of two 
fruits to eat, to highly complex, such as choosing a destination for your vacation or the next 
move in a game of chess. This contrasts with perceptual decision-making, which is based 
primarily on sensory information that is readily available, such as deciding whether a set of 
dots move to the right or left side of the screen (Hanks & Summerfield, 2017; Shadlen & 
Newsome, 1996). 
Like any other type of decisions, value-based decisions are subject to speed accuracy trade-
offs in the sense that the probability of picking the best option can only increase at the cost of 
spending more time deliberating (Chittka et al., 2009; Luce, 1991; Schouten & Bekker, 1967; 
Wickelgren, 1977). In simple perceptual decision-making tasks, the increase in accuracy with 
time is thought to reflect a very basic mechanism: neurons are noisy (Shadlen & Newsome, 
1998) but the noise can be averaged out over time, thus decreasing uncertainty and, 
consequently, increasing the accuracy of the decision (Shadlen et al., 1996). According to this 
view, internal neuronal noise is the main factor determining decision time (Gold & Shadlen, 
2007; Palmer et al., 2005). We argue here that, in complex value-based decision-making, 
neuronal noise plays only a minor role in determining decision time and more generally the 
speed accuracy trade-off. 
Speed accuracy trade-offs in decision-making apply to all systems, even computers. The more 
time devoted to a decision, the more likely it is correct. However, in computer science, and in 
contrast to neuroscience, internal noise is a non-issue since digital computers are effectively 
noise-free. The only noisy part in such systems are the sensors, such as cameras or 
microphones. For these sensors, more time can indeed result in better signal-to-noise ratio via 
averaging, but once inside the computer, further averaging is of no use since any additional 
noise is carefully corrected for. Yet, computers nonetheless feature a speed accuracy trade-off 
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for complex problems (e.g., Huang et al., 2017), for two reasons. The first has to do with 
retrieving memories, an extremely complex – and potentially slow – process for large 
databases. The second has to do with computing the value associated with an option given a 
retrieved memory. In both cases, the more time devoted to these computations, the more 
accurate the decision. In the case of memory, the probability of retrieving the relevant memory 
for a given decision grows with search time, while for value computation, the precision with 
which the value is being computed scales with the time devoted to the computation. This is 
exemplified in traditional computer chess programs, that evaluate the quality of a move by 
considering its consequences for future board positions (Russell et al., 2010). The further they 
look into the future, the more accurate this evaluation, but the more time they take doing so 
(Ferreira, 2013). Furthermore, this evaluation requires recalling the value of future board 
positions, which is more precise when using more complex value heuristics that might take 
longer to compute.   
We argue here that the same must be true in the brain: for complex, value-based tasks, 
decision-making is primarily constrained by two distinct computations: memory retrieval and 
computational complexity, as opposed to neuronal noise. In addition, we discuss another 
critical factor, namely, how to turn these computations into a policy – a way of deciding 
whether or not to take more time and access more memories, or make an immediate decision. 

Simple versus complex decisions 
Let’s consider a simple choice such as whether you want to eat a peach or a mango for dessert. 
To evaluate the respective values of these choices, you could recall from memory the values 
you experienced every time you ate either of these fruits (Shadlen & Shohamy, 2016). 
Assuming each experience led to a slightly different value, sampling these memories would 
generate two time-series of noisy momentary values, which you can then use to estimate the 
value of each fruit (Fig. 1a). Collecting more memory samples implies that you can estimate 
the expected value of the two options with higher accuracy. However, whatever time is spent 
on forming this choice is not spent on other activities. It is therefore in your interest to decide 
as quickly as possible. The typical approach to resolving this speed-accuracy trade-off consists 
of seeking a policy, which we will refer to as the optimal policy, that maximizes the reward (the 
pleasure you get from eating the peach or mango) relative to the cost of time and mental 
operations.  

To derive the optimal policy, the decision maker first needs to compute the probability 
distribution over values (in Bayesian terms, the belief) for each of the options, given all the 
evidence (or samples, we use the two terms interchangeably) that has been collected up to the 
current time. We will use p(vk|e(1:T)) to denote the posterior distribution over the value,  vk, 
of option k (for this example either ‘peach’ or ‘mango’) given the time series of T memory 
samples, denoted e(1:T). According to Bayes’ rules, this posterior distribution is proportional 
to the product of two quantities. The first quantity is the prior over the value, p(vk), that is, the 
frequency, or probability, with which we are of being offered choices with value vk in our life. 
For instance, we face small-valued choices every day, such as deciding on dessert at the end 
of a meal, while high-valued choices, like your next vacations, only happen a few times per 
year and have, therefore, a much smaller prior probability. The second quantity is the 
likelihood function, p(e(1:T)|vk) (Fig. 1a). This tells us how likely it is to observe the sequence 
of evidence, e(1:T)= {e(1), e(2),... e(T)}, if option 𝑘 has value vk . For instance, for simple 
decisions, it is typically assumed that a single sample of evidence at time t, e(t), is the option’s 
true value, vk, corrupted by Gaussian noise, arising for instance from neuronal noise in 
memory circuits (Ratcliff, 1978; Shadlen & Shohamy, 2016; Tajima et al., 2016). Under this 
assumption, p(e(t)|vk) is a Gaussian function of vk. If evidence is drawn over time from 
memory in a statistically independent way, p(e(1:T)| vk) can be factorized into a product of 
marginal likelihoods, p(e(t)|vk), which significantly simplifies incrementally updating the 
posterior with each recalled memory (Gold & Shadlen, 2007). If, in addition to assuming that 
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the likelihood function is Gaussian, we further assume that the prior is Gaussian, the posterior 
distribution--the product of the prior and likelihood-- is also Gaussian and easy to compute. 
Next, the decision maker needs to determine an optimal stopping policy, i.e., a rule that 
determines when to stop collecting samples before making a choice (Bogacz et al., 2006; 
Drugowitsch et al., 2012; Drugowitsch, Deangelis, et al., 2014; Furl & Averbeck, 2011; Gold & 
Shadlen, 2007; Tajima et al., 2016; Wald, 1945). In the Gaussian case, both the optimal stopping 
policy and computing the posterior can be implemented exactly with a very simple model, 
known as drift diffusion model (DDM), which we review in a next section. A DDM 
accumulates over time the difference in momentary evidences across the two choices and 
stops whenever this accumulated evidence exceeds a threshold, which acts as a stopping 
bound (Chernoff, 1961; Tajima et al., 2016).  

This general strategy – computing the posterior distribution over the available options and 
then finding a stopping policy, usually in the form of boundaries on some function of the 
posterior – is applicable to all decisions, whether value-based or not (Tajima et al., 2016, 2019). 
However, this seemingly simple strategy can hide a great degree of complexity. This 
complexity arises from at least two interacting components: computing the posterior 
p(vk|e(1:T)), and using this posterior to decide when to make a choice. In our simple example, 
in which all the evidences are drawn from a Gaussian distribution, the optimal policy reduces 
to a DDM.  In general, however, computing the likelihood,  the posterior and the optimal 
stopping policy is much harder.  

For instance, imagine you’ve narrowed down your next vacation to either Shanghai or Kyoto. 
Unless you have visited these cities multiple times, you don’t have the option of averaging 
over samples of past value evaluations. An alternative strategy would be to collect a variety 
of facts from your memory that would help constrain the values of these two cities (Fig. 1b). 
For instance, their values will necessarily depend on urban activities that you would enjoy, 
such as museums, restaurants, concerts, architectural landmarks, etc. But which memories 
should you recall to inform your decision? For example, recalling that both cities are located 

 
Figure 1: Simple versus complex value-based decisions. a) Simple choices, like deciding whether to eat a peach 
or a mango. For such choices, models typically assume that memory provides a time series of noisy samples of the 
value of each object (the black and red traces), from which the agent can infer probability distributions over the 
values of the options, which in turn determine the choice. b) For complex decisions, such as choosing the 
destination for your next vacation, the process must involve at least two steps which are considerably more 
complicated. First, relevant facts for the choices at hand must be retrieved from memory, such as the list of 
museums or restaurants, in the case of cities. Second, the value of the options, or rather a probability distribution 
over these values must be inferred from the retrieved facts. Both steps are subject to the speed-accuracy trade-off. 
The more time is devoted to a memory search, the more likely it is to be exhaustive. Likewise, the accuracy of the 
value computation is dependent on the time allocated to the computation.  
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in Asia does not differentiate between the two cities and therefore does not help to decide, 
whereas recalling that they are in China and Japan might. Moreover, how do you infer the 
values of the two cities given the memories you have recovered? And how do you determine 
that you have searched your memories long enough; that is, when do you stop collecting more 
evidence? Clearly, at this point we are no longer dealing with just a time series of values 
drawn from Gaussian distributions. As a result, computing the posterior distribution over the 
values of each options, and the associated stopping bound, will be considerably more 
complicated. 
As mentioned in the introduction, we argue below that these are indeed the three main 
difficulties in complex decision making: how to efficiently search a very large database for 
relevant facts, how to compute the posterior over option values given these facts, and coming 
up with a policy for stopping either of these operations. It is the combination of these three 
factors that determine the speed accuracy trade off.  

Drift diffusion models 
Before discussing complex decisions, let us return to the simple peach vs mango example 
above. In this example we assumed evidence to be drawn independently and identically 
distributed from Gaussian distributions with means equal to the actual values of the option. 
What is the best way to handle such choices? We could treat each choice as a single, isolated 
choice, but in the course of our life we have many such choices to consider. For instance, 
within a meal we may choose between several appetizers, entrees, dessert (peach vs mango) 
and after-dinner drinks. In such a situation, it makes more sense to ask how to optimize a 
sequence of such binary choices rather than a single one (Drugowitsch et al., 2012; Tajima et 
al., 2016). The faster we decide each choice, the quicker we can move to the next one. This 
suggests a policy in which, at each time step, say every 100ms, we collect two samples of value 
(one per choice option) from our memory, compute the difference, and accumulate these 
differences over time until their sum exceeds some stopping bound (Fig. 2b). In most models, 
the height of the stopping bound either remains the same at all times, or collapses over time. 
If it collapses progressively, less accumulated evidence is required to make a choice as time 
elapses (Fig. 2b). Implementations of such a strategy are known as drift diffusion models, or 
DDMs (Ratcliff, 1978; Ratcliff & McKoon, 2008; Tajima et al., 2019). If the prior over values in 
the world is Gaussian, the values accessed by memory are corrupted by Gaussian noise with 
identical variance, samples are drawn in pairs, and the bound is chosen correctly (and in 
particular collapses over time), DDMs maximize the average reward rate (Chernoff, 1961; 
Tajima et al., 2016). 
In DDMs, the decision time depends on the drift rate, which is the difference in the true mean 
values of the two options (Fig. 2a). If the two options have nearly identical means, the drift 
rate is small, and reaction times are long. This predicts long reaction times even when both 
values are very large. This seems counterintuitive: why would a decision maker agonize over a 
choice when both options are good? It would seem to make more sense to pick an option 
quickly, since a high reward is guaranteed. This is true indeed but only if the decision maker 
knows in advance that both options are very likely to have similar high values. However, in 
real life, there is no reason to believe that most choices will have similar values. It is more 
realistic to assume that values are drawn independently from the same Gaussian distribution, 
in which case the options will frequently have very dissimilar values. If dissimilar values are 
common, it is advantageous to use a decision-making strategy that leads to quick decisions 
when the two options have dissimilar values, at least when the values follow Gaussian 
distributions (Tajima et al., 2016). Such a strategy is precisely what a DDM provides, since it 
is sensitive to the difference in values: the larger the difference, the faster the decision (Fig. 2b 
left vs. right). This comes as the cost of slow decisions for choices with similar values but that’s 
fine as long as such occurrences are rare. 
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Interestingly, humans appear to follow the classic DDM strategy, that is, deciding when the 
accumulated difference in value between two options exceeds some bound. Indeed, DDMs 
have been shown to provide exquisite fits to psychometric and chronometric curves in 
perceptual and value-based decision-making (Krajbich et al., 2010; Palmer et al., 2005; Ratcliff 
& McKoon, 2008). Despite their success, however, DDMs are unlikely to provide a general 
framework for decision-making beyond the most basic tasks. The DDM strategy is optimal 
only under very restrictive conditions (Bogacz et al., 2006; Drugowitsch et al., 2012; 
Drugowitsch, Deangelis, et al., 2014; Tajima et al., 2016). For example, the information each 
evidence sample provides needs to be independent of all others, and their collective 
information must be summarizable by a single variable, such as their cumulated sum, that 
evolves towards the stopping bounds. As soon as these conditions are violated, DDMs are 
suboptimal (Drugowitsch, Moreno-Bote, et al., 2014; Jang et al., 2021; Tajima et al., 2016). These 
restrictive conditions are especially likely to be violated in complex decision-making tasks. In 
such tasks, a set of memorized facts or features is retrieved from memory, from which value 
must be inferred. Optimal decision making reduces to DDMs only if the memories can be 
turned into noisy samples of the true value, the variance of the noise is the same for all options, 
and the prior on value is Gaussian. As we discuss below, none of these conditions are satisfied 
in complex decision-making tasks.  

Memory retrieval 
In computer science, computing time is of paramount importance. Enormous efforts are 
devoted to developing algorithms that scale as well as possible with the size of the problem. 
In fact, the computational complexity of a problem is defined precisely with respect to this 
scaling (Moore & Mertens, 2011). Likewise, databases must be carefully organized to 
minimize retrieval time and maintenance. A poorly organized database can considerably slow 
down retrieval time, or can lower the probability of recovering relevant information, which 

 
Figure 2: Drift diffusion models (DDMs) of simple decision. a) For simple choices, it is typically assumed that 
value samples are drawn from memorized past experiences for either choice item (Fig. 1a). DDMs assume these 
samples to be independently drawn from a Gaussian distribution, centered on the item’s actual value (vertical 
lines), here illustrated for two subjectively similarly valued items (peach & mango) and one subjectively lower-
valued item (durian; generally considered unappealing). b) In DDMs, the difference between choice items of 
sampled item values is accumulated over time until one of two decision boundaries (solid black) is reached, 
triggering the corresponding choice. The accumulated evidence resembles a random walk (blue example 
trajectory) with deterministic drift (black arrow) equal to the actual item value difference, and the stochastic 
diffusion (grey shaded area showing diffusion SD) reflecting the noisy value samples. This results in a 
counterintuitive behavior: choice between two similarly high value items, such as the mango and the peach in our 
example, are slow because the difference in actual values is small, resulting in a low drifting rate. This is 
counterintuitive because one would imagine that choosing should be fast when all options are highly valuable.  
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in turn can dramatically 
alter the performance of an 
algorithm. For instance, 
when asked to answer a 
query such as ‘name 
animals similar to a horse’, 
computing time and 
performance would be 
largely improved if one 
were to organize the data 
according to a taxonomic 
tree rather than in simple 
list of animals along with their properties (Kemp & Tenenbaum, 2008) (Fig. 3a,b).  
The same constraints must apply to the nervous system (Austerweil et al., 2012). The human 
brain presumably stores several million memories. How do we search through them? How 
are they organized? How do we know that we have recovered all the relevant information 
supporting a given decision? These are extremely complex issues. Ultimately, we can’t be sure 
we have retrieved all the relevant, stored information and whether it is indeed possible to 
retrieve all the stored information in a reasonable amount of time. We have all experienced 
situations in which we spent hours if not days to reach a decision, such as choosing between 
different careers, or picking a school for our kids, simply because we want to make sure we 
have left no stone unturned, that we have indeed considered all the relevant facts. 
Indeed, given the inherent uncertainty in this process, memory retrieval faces the standard 
speed accuracy trade-off: the more time is spent on retrieving relevant memories, the more 
accurate the retrieval will be (Osth et al., 2018; Ratcliff, 1978). To find the optimal compromise, 
the decision maker should have knowledge of the statistics of memory retrieval, which 
correspond to the likelihood function associated with each recalled memory e. For simple 
decisions, we have assumed this likelihood p(e|vk) to depend on each option’s value vk, in line 
with the idea that the retrieved memories are simply samples of previous value evaluations. 
For complex decisions, we either have no memories of previous value evaluations (e.g., we 
are considering going to Kyoto even though we have never been there), or memories that only 
apply in very restrictive contexts which limits their use. Thus, we instead use likelihood 
p(e|ck), where ck is the identity of option k (e.g., c1=”Shanghai”, c2=”Kyoto”). 

Conditioning on the choice option’s identity ck rather than its value vk makes explicit that 
memories are recalled when cued with the option’s identity rather than being noisy samples 
of the option’s value. This also reflects that, as already discussed, not all memories are 
necessarily informative about the option’s value. This likelihood p(e|ck) is what is commonly 
known as a generative model, that is, a probabilistic model of how the decision maker recalls 
relevant information from memory. For instance, if you’re pondering a trip to Paris, your 
memory circuits are very likely to reactivate the memory of the Eiffel tower, which is to say 
that p(e=Eiffel tower|ck=Paris) is very high, while the probability that you will remember the 
Guimet museum, which hosts a unique collection of art from South-East Asia, is much smaller. 
Combining this likelihood with a model for how memories inform the choice option’s value 
(p(vk | e(1:T), ck)) results in a full model that in turn results in value estimates from which we 
can determine the optimal stopping time.  

 

 
Figure 3: Two different representational structure for animals. a) 
Alphabetical list along with the properties of each animal. Search time is 
efficient when looking for a specific animal but answering questions like “find 
an animal similar to zebra” would scale with the number of items in the list. 
b) A tree-like representation. In this case, finding a specific animal would take 
more time but finding similar animals is very efficient since they are close-by 
leaves of the tree.  
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The problem is that characterizing p(e|ck) requires a thorough understanding of how 
memories are organized in the nervous system, as well as how they can be queried by the rest 
of the brain, of which we have only a scant understanding. Several studies suggest that 
memory retrieval is consistent with random diffusion in semantic networks (Austerweil et al., 
2012).  
More recently, Tsodyks and colleagues demonstrated that memory recall can be modelled 
with Hopfield networks, a class of recurrent networks in which memories correspond to stable 
patterns of activity, also known as point attractors. For instance, the memory for a bee in Fig. 
4b correspond to a pattern in which neurons 1, 4, and 6 are active while the other neurons are 
silent. Memory recall in this model starts by converging onto an attractor, the first recalled 
memory, which subsequently fades away due to adaptation, leading the network to fall into 
another point attractor, corresponding to another memory, and so forth  (Katkov et al., 2017; 
Romani et al., 2013) (Fig. 4). To the extent that the topology of the Hopfield network, that is, 
the spatial proximity of the attractors, reflects the representational proximity of the stored 
items in a semantic network, this mechanism is similar to a random diffusion in a semantic 
network.  
The topology of the semantic network remains to be determined but, in some cases, it seems 
clear that it is learned from experience. For instance, Behrens and colleagues recently 
suggested that conceptual spaces, which are very much like semantic networks, are organized 
in 2D maps in the hippocampus and entorhinal cortex (Constantinescu et al., 2016). 
Furthermore, Knudsen and Wallis  proposed this map to be directly over the space of values 
(Knudsen & Wallis, 2021). Searching through these spaces is then equivalent to a navigation 
problem in a physical environment. Having such conceptual maps raises the possibility that 
searches could be goal-directed by learning paths within a semantic network to retrieve 
specific memories, similar to how we direct our saccades to actively gather information about 
our visual environment (Yang et al., 2016).  

In fact, one could imagine that memory retrieval involves simulations of complex models of 
the environment, and does not merely rely on diffusion through 2D conceptual spaces. For 
instance, when choosing between Shanghai and Kyoto, one could mentally simulate what a 
typical weekend would be like in each city in order to reactivate the proper memories, such 
as museums, restaurants or architectural landmarks. This strategy of focusing on memories 
that best help deciding between the available choice options would be vastly more effective 
than a random search but would require a sophisticated model of the environment. This is 
precisely what cortical circuits, particularly in prefrontal and frontal areas, might provide 
(Benoit et al., 2014). The vast expansion of these areas in the human brain is quite likely related 

 
Figure 4: A network model for memory retrieval. a) Memory retrieval by traversing a semantic network. The 
similarity between memories (right, darker = more similar, from Fig. 3b) determines the connectivity strength 
between nodes in a semantic network (left). Memory recall follows the strongest connections while excluding just 
visited memories. The red arrows show one example recall sequence, starting with “tuna”, followed by “shark”, 
“bee”, and “spider”. Recall terminates upon repetition of the same memory sequence. b) A Hopfield network (fully 
connected, here only illustrated for two neurons), in which memories are encoded by sparse population pattern,  
called, attractors, can implement the recall strategy from a. Here, more similar activity patterns reflect more similar 
memories (shown as neuronal population activity patterns). Memory transitions are enforced by fluctuating 
inhibitory currents. Figure based on principles discussed in (Katkov et al., 2017; Romani et al., 2013). 
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to humans’ remarkable abilities to develop and simulated complex models of the 
environment. 

Value computation 
As we have seen, the statistic of memory retrieval is a likely key determinant of optimal 
decision-making policies but an equally important factor is the computation of the value 
themselves.  
In the simplest case, a value might just be a weighted sum of the perceived value of each 
feature of each of the recalled memories (e.g., Iigaya et al., 2020), but, more generally, complex 
cases require nonlinear combinations. For instance, the fact that your favorite band is playing 
in Shanghai shouldn’t have much of an impact on how much you value Shanghai, unless you 
also know you can get tickets. In this case, the value is related to the product of these two 
features, which is to say, it is nonlinear. In general, the more complex and nonlinear the 
computation, the more computation time it will required. There are exceptions to this rule, 
such as deep networks that can compute remarkably complex nonlinear functions in about 
the same time as linear functions (for instance, switching the activation of neurons in a deep 
network from nonlinear to linear, barely affects simulation time). However, there are many 
situations in which simple feedforward architectures may not be sufficient to compute value. 
As we have pointed out above, the decision maker should try to infer a posterior distribution 
over value given the information retrieved in memory. In general, this would involve 
performing inference on a Bayesian network, which can be quite involved when the statistical 
relationship between the variables are complex (Fig. 5a). For instance, for complex inference, 
the method of choice is known as Monte Carlo Markov Chain (Gilks et al., 1998), which 
involves drawing numerous samples from the posterior distribution, a time-consuming step. 
If the brain were to use a similar approach (Orbán et al., 2016), a large fraction of the decision 
time would be spent on this step, leading to yet another speed accuracy trade-off: how long 
should the brain sample this network before stopping and deciding? Indeed, with any 
sampling technique, accuracy of inference scales with the number of samples and therefore 
time.  
In addition, for some problems, it might make sense to rely on further internal simulations, 
not to retrieve facts but to generate states that can help evaluate the value of the current 
options. Going back to our example of chess, the current options are all the possible legal 
moves given the current board configuration. The decision faced by the player at every turn 
consists of picking one move among the legal ones. In computer programs, this involves 
simulating several moves forward, and evaluating the resulting values of the board 
configuration, a process known as tree search (Fig. 5b; (Russell et al., 2010)). Therefore, in this 
case, the value of the current moves is not obtained by recovering stored board positions from 
memory, along with their associated values. Instead, simulations are used to generate future 

 
Figure 5: Bayesian networks and internal simulations for decision making. a) Excerpt of an example Bayesian 
Network that might be used to compute the value of visiting Shanghai. Ellipses show random variables (examples 
in black) whose dependency structure is specified by connecting arrows. “tickets available?” for example, depends 
on “travel date” and “good band playing”. More formally, its probability is the conditional probability distribution 
p(tickets available? | travel date, good band playing?). b) Similar to human chess players, game-playing 
algorithms consider future board positions and their associated value when planning the next move.  
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board positions several moves ahead and use a function evaluator (e.g., a deep neural 
network; (Silver et al., 2018)) to evaluate the value of these future board configurations, which 
are then used to estimate the value of the current moves. Although no memory search is 
required here, such simulations are time consuming and would involve a speed accuracy 
trade-off. 

The optimal stopping policy  
So far, we have argued that what makes complex decision making hard is memory retrieval 
and value computation, as opposed to noise averaging in standard models of perceptual 
decision-making. Both computations are subject to speed accuracy trade-off in the sense that 
the more time is devoted to these operations, the more accurate the decision will be. Which 
raises a third problem: when should the agent make a choice between the options? How 
should the agent determine that enough memories have been searched and that the 
computation of the values is accurate enough?  
The goal of the memory search and value computation is to infer a posterior distribution over 
the value of all available options. However, knowing the posteriors is not enough to determine 
a stopping policy – that is, it’s not enough to decide whether to choose an option or to gather 
more evidence (in the form of more memories and additional computation). For that, two 
more quantities are needed: an estimate of how much the two distributions over value will 
change if more evidence is received, and the cost of spending time accumulating more 
evidence versus doing something else. The stopping policy then involves a tradeoff: is 
additional information worth the cost of time?   

Estimating how much information is gained by gathering more evidence is a hard problem – 
at least as hard as computing the posterior. Except for very simple generative models, doing 
this exactly is, at the very least, computationally costly, and in the typical case it’s intractable 
(Griffiths et al., 2019). Qualitatively, however, simple heuristics may work well: observe how 
much the posteriors change with new memories, and when they stop changing very much, 
make a decision (Drugowitsch et al., 2012; Vul et al., 2014). But how much is “very much”? 
This is hard to answer for two reasons. First, as discussed above, single memories can have a 
massive effect on value. So, the fact that the posterior hasn’t changed much with the last few 
memories doesn’t mean it won’t when a new memory arrives, and that must be taken into 
account. The second reason has to do with the cost of time. In a laboratory setting, where 
participants perform a single task, the cost of time is simply the average reward rate (Tajima 
et al., 2016). In realistic situations, one almost always has the option of doing many things. For 
instance, if there’s a critical deadline at work, it’s likely that little time will be spent planning 
a vacation; whereas if work is especially easy, a great deal of time will be spent planning. In 
addition, simple things like vacation rate matters: if you take one vacation in your life you’re 
going to spend a lot more time planning it than if you take a vacation every six months. 
In summary, the time spent on hard decisions – in this case, how many memories to recall 
before making a decision – depends strongly on the reward structure in the rest of a person’s 
life. This can vary wildly, both from one person to the next, and over time for each individual; 
concomitantly, the decision time will vary wildly. How people determine a stopping policy 
that is even remotely good under these circumstances is a bit of a mystery. 

Buridan’s ass revisited 
Buridan’s ass is a well-known dilemma in philosophy in which an equally thirsty and hungry 
donkey happens to be at an equal distance of equally appetizing sources of water and food. 
How could the animal break the tie? Clearly, such a conundrum only exists if both choice 
options are exactly equally appetitive. The tie is easily broken as soon as their associated value 
signals are noisy, such as assumed by even the simple diffusion models. Nonetheless, studies 
have indeed shown that it takes people a long time to decide between two options with 
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comparable high values (Krajbich et al., 2010). Why agonize over such decisions? Wouldn’t 
the decision maker be better off just picking either option right away and then move on to the 
next decision? The standard explanation for this counterintuitive behavior is the one we 
discussed previously, and which relies on DDMs: human decision making is well modeled by 
drift diffusion models, which predicts  long reaction times for making decisions between 
choices of equally high value (Fig. 2b).  
We saw that for the simple case in which diffusion models implement the normative policy, 
this strategy does make sense, and in fact can even be optimal. However, this conclusion only 
applies to the simplest type of choices in which participants can be assumed to receive noisy 
value samples over time, making DDMs optimal. For complex decisions, as we have argued, 
noise may not be the bottleneck. Instead, retrieving the relevant information in memory and 
computing value are the computationally demanding steps, which we believe offer a new 
perspective on why people agonize over decisions involving high valued items. Indeed, 
retrieving the relevant facts to decide between a weekend in Shanghai or Kyoto takes time 
and is subject to uncertainty. Even after recalling facts about, say, museums and landmarks, 
we can’t be sure that further contemplation doesn’t bring up essential, decision-changing 
information. For example, we might recall cherry blossom season in Kyoto just after having 
booked a non-refundable flight to Shanghai. In other words, the decision options might have 
very different values once all relevant information is considered. Retrieving all the relevant 
information, however, takes time, because memory retrieval is a complex and stochastic 
process (Austerweil et al., 2012; Katkov et al., 2017; Romani et al., 2013). Likewise, inferring 
probability distribution over values can be time consuming, particularly if it is based on 
sampling strategies like MCMC. Then, being conservative and taking time to make good 
decisions might indeed be the best strategy, as it prevents us from committing seemingly good 
choices which could turn out to be a lot worse than the alternative once all the evidence has 
been recovered and assessed. Therefore, the reasons we are slow at deciding between two 
equally good options for complex decisions may not be so much due to the use of DDMs. 
Instead, they may be related to increased complexity of memory retrieval and value 
computation that require time and cannot be captured by simple models such as DDMs. 

Discussion 
Over the past few decades, neuroscientists and cognitive scientists have started to uncover 
the neural basis of decision making, guided by the development of precise quantitative 
behavioral and neural models (Beck et al., 2008; Gold & Shadlen, 2007; O’Connell et al., 2018). This 
remarkable line of work has been made possible by focusing on relatively simple forms of 
decision-making such as perceptual and simple value-based choices. As we have seen, for 
these types of decisions, the decision-related evidence determines the choices via a very 
simple process. For instance, in models of simple value-based decision making, the pieces of 
decision-related evidence are drawn from Gaussian distributions with means equal to the true 

Text box 1: Averaging out the noise. The typical recipe to average out the noise in a series 
of samples all drawn independently from the same distribution is simple. It requires 
adding the sample and dividing by the total number of samples, yielding the empirical 
mean of the distribution. Note, however, that the division by the total number of samples 
is not required to average out the noise. Indeed, consider the variable corresponding to the 
sum of the samples. The mean of this variable is proportional to the number of samples. 
Its variance is also proportional to the number of samples, which implies, that its standard 
deviation scales with the square root of the number of samples. This implies in turn that 
the signal to noise ratio, the ratio of the mean over the standard deviation, grows with the 
square root of the number of samples. Therefore, simple accumulating samples without 
dividing by their number, as it done in the DDM, already increase the signal to noise ratio, 
effectively averaging out the noise. 
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values. Then, the noise corrupting the evidence is the only factor limiting behavioral 
performance. Its deleterious impact can be mitigated by integrating increasingly more 
evidence, which averages out the noise. In fact, in simple models, averaging out noise is the 
main factor to the speed-accuracy trade off because decisions can be arbitrarily accurate, but 
only at the cost of spending an inordinate amount of time accumulating evidence, and thus 
reducing noise.  
In contrast, noise is unlikely to be the main limiting factor for complex decision making. In 
fact, even for simple decision, whether neuronal noise is the main factor determining 
performance is far from clear (Beck et al., 2012; Drugowitsch et al., 2016). However, more 
importantly, other factors will necessarily contribute to the speed-accuracy trade-off, 
including in particular memory searches and value computation. As we discussed, both of 
these processes are major and unavoidable time sinks when making complex decisions, and 
are vastly more complex than simply averaging noise. Averaging noise is trivial: it simply 
requires adding samples over time (see Text box 1). In contrast, efficient database search or 
value inference in large Bayesian networks requires considerably more complex algorithms. 
This is indeed well known in the field of artificial intelligence, where computation and 
efficient search of large databases are central problems (Moore & Mertens, 2011; Murphy, 
2012), while noise is a non-issue given that computers are effectively noise free. With regard 
to memory, the speed of searching through a database depends on its organization and its 
number of entries. However, regardless of the organization, in a fixed amount of time, only a 
subset of entries can be considered, leading to reduced precision that is prone to a speed 
accuracy trade-off. Similar principles must apply to neural memories. However, while 
multiple neural structures are thought to be involved in memory storage and memory 
retrieval, we still know very little about how the brain retrieve memories efficiently. It is quite 
likely that memory search not only relies on the decision’s general context (Bornstein & 
Norman, 2017), but furthermore involves simulating complex models of the task at hand (e.g., 
simulating a day in a city to recover relevant facts about a city you intend to visit) but we are 
far from understanding how this is implemented in neural circuits. The rich literature of 
replay in the hippocampus (Foster & Wilson, 2006; Johnson & Redish, 2007; Pfeiffer & Foster, 
2013) provides some intriguing cues, suggesting in particular that the brain may rely on 
internal simulations of the outside world to re-activate memories. However, much of the 
hippocampal literature is limited to the spatial domain or extremely simple abstract 
environments (Constantinescu et al., 2016) in which the use of internal simulations seems 
almost unwarranted.  Hopefully, future studies will be able to consider how humans retrieve 
memories in much more complex environments in which memory retrieval becomes the 
computational bottleneck. It is difficult to predict which parts of the brain implement these 
computations but given the implication of the thalamus and cortex in storing long-term 
memory, it is likely that memory retrieval will involve more than just the hippocampal 
circuits. Recent studies suggest that, indeed, replays are observed in human cortex and 
hippocampus during decision-making and play a role in memory retrieval and consolidation 
(Eldar et al., 2018, 2020; Kurth-Nelson et al., 2016; Liu et al., 2019). This demonstrates the 
feasibility of studying the neural basis of memory retrieval in humans and highlight the 
similarities to research in rodents. Likewise, speed accuracy trade-offs are at play when 
computing values. If this process relies on simulations — whether deterministic (e.g. 
imagining future chess board positions) or stochastic (e.g. Monte-Carlo sampling-based 
methods) — the accuracy of the computation will typically scale with the time spent on the 
computation. Just like for memory search, the neural basis of value computation is still very 
much unknown. Part of the bottleneck in this research has been the paucity of detailed 
neuronal models that would help inspire future experiments. One promising avenue of future 
research is to combine such network models with symbolic systems (sometimes called 
systems 1 and 2; (Kahneman, 2013)) whose algorithms traditionally directly manipulate the 
abstract symbols that are believed to govern human conscious thoughts, irrespective of how 
those symbols are represented by our brain’s neurons. Hybrid models rely on a mixture of 
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such abstract representations (e.g., a tree of possible sequences of future moves in chess) along 
with ones learned by neural networks. These models  (e.g., Schrittwieser et al., 2020), but also 
offer a promising path towards understanding how our brains use past information to make 
efficient decisions.  
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